## THE DENSENESS OF COMPLETE RIEMANNIAN METRICS

## JAMES A. MORROW

The purpose of this note is to expand a bit on a theorem of K. Nomizu and H. Ozeki. In [1], they proved that on any paracompact connected  $C^{\infty}$  manifold there is a complete Riemannian metric. In fact, it was shown that if M is a  $C^{\infty}$  manifold,  $T_pM$  is the tangent space of M at  $p \in M$ ,  $\xi, \eta \in T_pM$ , and  $g_p(\xi, \eta) = g_p = g$  is a Riemannian metric on M, then there is a  $C^{\infty}$  function f on M such that  $fg = (fg)_p(\xi, \eta) = f(p)g_p(\xi, \eta)$  is a complete Riemannian metric on M. We intend to prove the following theorem.

**Theorem.** Let M be a connected  $C^{\infty}$  manifold with Riemannian metric g. Then given a compact subset  $K \subseteq M$ , there is a complete Riemannian metric h on M such that  $h|_K = g|_K$ , where  $h|_K$  denotes "h restricted to K".

**Corollary.** If the space of Riemannian metrics on a connected  $C^{\infty}$  manifold M is given the topology of convergence of all derivatives of order up to l on compact subsets of M, then the complete metrics form a dense subset of the space of all metrics. (This is true for each fixed l,  $1 \le l \le \infty$ .)

We make the following remarks.

**Remark 1.** The result can clearly be extended to non-connected paracompact manifolds.

**Remark 2.** In case M is compact, the result is trivial.

Before proceeding with the proof of the theorem, for the convenience of the reader we review the proof of Nomizu-Ozeki. Assume g is not complete, and let  $B_p(r)$  be the metric ball

$$B_{p}(r) = \{q \in M \mid \mu_{q}(p,q) \leq r\},$$

where  $\mu_g$  is the metric on M arising from the Riemannian metric g. Further let

$$d(p) = \{\sup r | B_p(r) \text{ is compact}\}.$$

Then  $d: M \to R$  is a continuous real-valued function. It is easy to see that d(p) > 0 for all  $p \in M$ , and it is not difficult to show that there is a  $C^{\infty}$  function  $\bar{f}: M \to R^+$  such that  $\bar{f}(p) < 1/d(p)$  for all  $p \in M$ . Let  $f = (\bar{f})^2$ . Then fg is the required complete Riemannian metric. The proof of the completeness of fg is not difficult and can be found in [1].

We now give the proof of our theorem. Let  $M = \bigcup K_j$ , where the  $K_j$  are compact,  $K_j \subseteq \text{int } (K_{j+1})$ , (int (N) denotes the interior of a subset N of M). If

Received June 24, 1969, and, in revised form, December 14, 1969.

K is a given compact subset of M, then  $K \subseteq \operatorname{int} K_i$  for some i. For fixed i, the pair  $\{\operatorname{int} K_{i+1}, M - K_i\}$  is an open covering of M. By choosing a partition of unity subordinate to this covering, we obtain  $C^{\infty}$  functions  $\rho_1, \rho_2$  on M such that

- (a)  $\rho_1 \geq 0, \, \rho_2 \geq 0,$
- (b)  $\rho_1 + \rho_2 \equiv 1$ ,
- (c)  $\rho_1 \equiv 1$  on  $K_i$ , and  $\rho_2 \equiv 1$  on  $M K_{i+1}$ ,
- (d) support  $\rho_1 \subseteq \text{int } K_{i+1}$ , support  $\rho_2 \subseteq M K_i$ .

For the next step we use the theorem of Nomizu and Ozeki to get the existence of a positive  $C^{\infty}$  function f on  $M - K_i$  such that the Riemannian metric  $f \cdot (g|_{M-K_i}) = h_1$  defines a complete metric  $\mu_{h_1}$  on each of the connected components of  $M - K_i$ . Then  $h = (\rho_1 + \rho_2 f)g$  is a Riemannian metric on M. We claim  $\mu_h$ , the induced metric, is complete. If we prove this, we are finished, since  $h \equiv g$  on  $K_i$  and  $K \subseteq K_i$ . Let  $\{p_i\}$  be a  $\mu_h$ -Cauchy sequence in M. There are two cases. If infinitely many  $p_{\nu}$  are in  $K_{i+1}$ , then  $p_{\nu} \to p \in K_{i+1}$ since  $K_{i+1}$  is compact. If not, almost all  $p_{\nu}$  are in  $M - K_{i+1}$ , and since we can neglect finitely many  $\nu$  we may assume  $\{p_{\nu}\}\subseteq M-K_{i+1}$ . By passing to a subsequence if necessary, we may also assume  $\{p_{\nu}\}$  is contained entirely in a single connected component of  $M - K_{i+1}$ . (This can be seen as follows. First we may assume that only finitely many  $p_{\nu}$  are in  $K_{i+2}$ . Otherwise we could conclude the proof of the theorem since  $K_{i+2}$  is compact. Let  $3\sigma$  be the  $\mu_{\sigma}$ distance of  $K_{i+1}$  from  $M - \text{int } K_{i+2}$ . Then  $\sigma > 0$ . Choose N so that  $p_{\nu} \in M$  $-K_{i+2}$  and  $\mu_g(p_{\nu},p_{\nu+k}) \leq \sigma$  for  $\nu \geq N$  and all  $k \in \mathbb{Z}, k \geq 0$ . This means given  $p_{\nu}, p_{\nu+k}, \nu \geq N, k \geq 0$ , there is a curve in M connecting  $p_{\nu}, p_{\nu+k}$  with g-length less than  $2\sigma$ . Since  $P_{\nu}$ ,  $p_{\nu+k} \in M - K_{i+2}$ , this curve cannot touch  $K_{i+1}$ . Thus  $p_{\nu}$ ,  $p_{\nu+k}$  lie in the same component of  $M-K_{i+1}$ .) For small enough  $\alpha$ , the  $\alpha$  neighborhood of  $K_{i+1}$ ,  $U_{\alpha}(K_{i+1}) = \{p \mid \mu_h(K_{i+1}, p) \leq \alpha\}$  is a compact set. If infinitely many  $p_{\nu}$  are in this we are done. So assume  $\mu_h(p_{\nu}, K_{i+1}) > \alpha$ for all  $\nu$ . Let  $\varepsilon < \alpha$ . Then any curve of h-length less than  $\varepsilon$  beginning at some p remains in  $M - K_{i+1}$ . But on  $M - K_{i+1}$ ,  $h = fg = h_1$ . Thus the  $h_1$ -length of any curve of h-length less than  $\varepsilon$  beginning at  $p_{\nu}$  is equal to the h-length. This proves that the sequence  $\{p_{\nu}\}$  is a  $\mu_{h_1}$ -Cauchy sequence in  $M - K_{i+1} \subseteq M$ -  $K_i$ . By assumption  $\mu_{h_i}$  is complete so  $\{p_i\}$  converges.

**Remark 3.** If one uses the topology of convergence of k derivatives on compact subsets, then the set of complete metrics is *not* an open subset of the set of all metrics on a non-compact manifold. It may be a residual set, but the author has not tried to prove it.

## **Bibliography**

[1] K. Nomizu & H. Ozeki, The existence of complete Riemannian metrics, Proc. Amer. Math. Soc. 12 (1961) 889-891.

University of Washington